Local structure and nanoscale homogeneity of CeO2-ZrO2: differences and similarities to parent oxides revealed by luminescence with temporal and spectral resolution.

نویسندگان

  • Carmen Tiseanu
  • Vasile Parvulescu
  • Daniel Avram
  • Bogdan Cojocaru
  • Magali Boutonnet
  • Margarita Sanchez-Dominguez
چکیده

Although homogeneity at the atomic level of CeO2-ZrO2 with a Ce/Zr atomic ratio close to unity is considered to be one of the main causes for the increased total oxygen storage capacity (OSC), the characterization approaches of homogeneity remain a major challenge. We propose a simple, yet effective method, to assess both structural and compositional homogeneity of CeO2-ZrO2 by using Eu(3+) luminescence measured with time and dual spectral resolution (emission and excitation). For Eu(3+)-CeO2-ZrO2 calcined at 750 °C, the X-ray diffraction, Raman and High-Resolution Transmission Electron Microscopy data converge to a single pseudo-cubic phase. However, the evolution of Eu(3+)-delayed luminescence from cubic ceria-like to tetragonal zirconia-like emission reveals the formation of CeO2- and ZrO2-rich nanodomains and provides evidence for early phase separation. For Eu(3+)-CeO2-ZrO2 calcined at 1000 °C, the emission of Eu(3+) reveals both structural and compositional inhomogeneity. Our study identifies the differences between the local structure properties of CeO2 and ZrO2 parent oxides and CeO2-ZrO2 mixed oxide, also confirming the special chemical environment of the oxygen atoms in the mixed oxide as reported earlier by Extended X-ray Absorption Fine Structure investigations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exceptional capability of nanosized CeO(2) materials to "dissolve" lanthanide oxides established by time-gated excitation and emission spectroscopy.

The atomic scale homogeneity of Ce and Zr oxygen bonds represents the main reason for enhanced total oxygen storage capability of CeO2-ZrO2 (Ce/Zr = 1) as compared to that of CeO2. Here, we demonstrate that the addition of 10% Eu(3+) by wet impregnation on preformed nanosized CeO2-ZrO2 (Ce/Zr = 1) followed by calcination induces a remarkable homogeneity of 10% Eu(3+)-CeO2-ZrO2 solid solution. B...

متن کامل

Structure Analysis of CeO2-ZrO2 Mixed Oxides as Oxygen Storage Promoters in Automotive Catalysts

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts that enables them to efficiently remove harmful compounds such as hydrocarbons, CO and NOx in automotive exhaust gases. In this report, three types of CeO2-ZrO2 (Ce:Zr = 1:1 molar ratio) compounds with different OSC were characterized by means of XRD (X-ray diffraction) and XAFS (X-ray absorption fin...

متن کامل

Atomic-scale structure of nanocrystalline CeO2–ZrO2 oxides by total x-ray diffraction and pair distribution function analysis

Total x-ray diffraction and atomic pair distribution function analysis have been used to determine the atomic ordering in nanocrystalline (∼1.5 nm in size) CeO2–ZrO2 prepared by a sol–gel route. Experimental data show that the oxides are a structurally and chemically inhomogeneous mixture of nanoscale domains with cubic-type and monoclinic-type atomic ordering, predominantly occupied by Ce and ...

متن کامل

Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations.

We report on structure-property relationships in Pr-doped CeO2 and ZrO2 using X-ray diffraction (XRD), Raman, UV to Vis Diffuse Reflectance (DR-UV/Vis), X-ray Photoelectron (XPS), and luminescence (PL) spectroscopies. Both 3+ and 4+ valence states of Pr are evidenced, irrespective of the host and calcination temperature, T (T = 500 and 1000 °C) with consequences on absorption, surface, vibratio...

متن کامل

Influence of electroplating parameters on microstructure and amount of ceramic particle deposition in Ni-Co-CeO2-ZrO2 composite coating

Austenitic stainless steels are high performance steels that have various applications in solid oxide fuel cells and boiler tubes under high temperature operating conditions. The Cr2O3 oxide layer formed on the steel surface becomes unstable at high temperatures and reduces the oxidation resistance of the steel. Therefore, protection of these steels at high temperatures is essential. Therefore,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2014